I’m an AI scientist shaped by three decades of hands-on industry and software product-building experience.
Currently, I conduct AI research as a faculty member in the Computer Science Department at the Holon Institute of Technology.
My research focuses on applying deep generative models to challenges in natural language processing, computer vision, and robotics. A central theme is the development of synthetic data generation techniques to support the training, fine-tuning, and evaluation of AI models, particularly in domains such as education, healthcare, and defense, where labeled real-world data is often scarce or inaccessible.
I am also especially interested in anomaly detection tasks, with a focus on generating synthetic anomalous data to overcome the inherent scarcity of labeled anomalies.
1995: Technion, BSc in Computer Science (4-year track), Paper
2004: Weizmann Institute of Science, M.Sc. in Computer Science, Thesis
2006: Polytechnic Institute of NYU, M.Sc. in Management
2012: Tel-Aviv University, PhD in Computer Science, Thesis
2013: Weizmann Institute of Science, Computer Science, Post-doctoral Fellowship, Paper
Courses in the Hands-on AI Science series
List of past, current, and upcoming course offerings and student projects
Other courses I taught in the past
More on teaching and curriculum development
O. Marom, 3D Vision for vegetation root monitoring, 2013
A. Gusin, Automatic tagging of browser bookmarks, 2013
R. Mishael, Joint segmentation and super resolution, 2018
D. Basson, Curriculum learning for image classification, 2019
Y. Galifat, Deep learning model optimization via selective inferencing, 2020
B. Kartz, Detection of human interactions in egocentric video, 2020
I. Efrosman, D. Cohen, Image mosaicking using SLAM techniques, 2021
Y. Goren, Interjection speech recognition, 2021
E. Reis, M. Sidon, Recognition of control elements in vehicle dashboards, 2023
A. Sahulu, Haze-aware object detection, 2023
R. Hirsch, Yarom Swisa Classification of dark images, 2024
Y. Rika, B. Kedarya, R. Zakian, Audio alarm detection, 2024
I. Adamenko, O. Ben-Aharon, Extreme de-warping using diffusion models, 2025
T. David, A. Cohen, Photo tagging via graph knowledge propagation, 2025
Y. Liziakin Active vision for Aerial Imaging, 2025
M. Chazanovitz, Strategic image acquisition for VQA, In progress
E. Moran, Implicit Entity Recognition, In progress
Y.Meshulam, Decentralized Multi-Robot Task Allocation under the Zero-Knowledge Assumption, In progress
O. Sasson, Imperfect Student Simulations using LLM, In progress
2020-2024: Questar Automotive, Head of Data Science
2015-2019: Motorola Solutions, Israel Innovation Center, Head of Research
2013-2015, Citi, TLV Innovation Lab, AVP Data Science
1993-2013: Various Software Companies, Developer/Chief Architect/CTO/Founder
More on innovation, and entrepreneurship
Apartsin, A., Ferapontova, E., & Gurvich, V. (1998). A circular graph—counterexample to the Duchet kernel conjecture. Discrete Mathematics, 178(1-3), 229-231
Galun, M., Apartsin, A., & Basri, R. (2005, June). Multiscale segmentation by combining motion and intensity cues. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (Vol. 1, pp. 256-263). IEEE
Apartsin, A., & Intrator, N. (2008). A data fusion and multiple ping method for improving the resolution of low‐power acoustic and seismic sensing. The Journal of the Acoustical Society of America, 124(4_Supplement), 2597-259
Apartsin, A., Cooper, L. N., & Intrator, N. (2010, August). SNR-dependent filtering for Time Of Arrival estimation in high noise. In 2010 IEEE International Workshop on Machine Learning for Signal Processing (pp. 427-431). IEEE
Apartsin, A., Cooper, L. N., & Intrator, N. (2011, January). Biosonar-inspired source localization in low SNR. In International Conference on Bio-inspired Systems and Signal Processing (Vol. 2, pp. 399-404). SCITEPRESS
Apartsin, A., Cooper, L. N., & Intrator, N. (2012). Semi-coherent time of arrival estimation using regression. The Journal of the Acoustical Society of America, 132(2), 832-837
Apartsin, A., Cooper, L. N., & Intrator, N. (2013). Time-of-flight estimation in the presence of outliers. Part I—Single echo processing. IEEE transactions on geoscience and remote sensing, 52(6), 3382-3392
Efrat, N., Glasner, D., Apartsin, A., Nadler, B., & Levin, A. (2013). Accurate blur models vs. image priors in single image super-resolution. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2832-2839)
Apartsin, A., Cooper, L. N., & Intrator, N. (2013). Time-of-flight estimation in the presence of outliers. Part II—Multiple echo processing. IEEE transactions on geoscience and remote sensing, 52(7), 3843-3850
Apartsin, A., Cooper, L. N., & Intrator, N. (2014). Energy-Efficient Time-of-Flight Estimation in the Presence of Outliers: A Machine Learning Approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4), 1306-1313
Cohen, O., Apartsin, A., Alon, J., & Katz, E. (2018, December). Robust motion compensation for forensic analysis of egocentric video using joint stabilization and tracking. In 2018, the IEEE International Conference on the Science of Electrical Engineering in Israel (ICSEE) (pp. 1-5). IEEE
Apartsin A., Reiter, G., & Williams, K. AI-based Signal Integrity Monitoring for Integrated Vehicle Health Management. In Proceedings of ELIV 2021 (pp. 143-150), VDI-Berichte Nr. 2384
Apartsin, A., Stein, H., Reiter, G., Williams, K., & Moscovich, N. (2022). Early Detection of Engine Anomalies-A Case Study for AI-Based Integrated Vehicle Health Management (No. 2022-01-0225). SAE Technical Paper
Aperstein, Y., Cohen, Y., & Apartsin, A. (2025). Generative AI-based platform for deliberate teaching practice: A review and a suggested framework. Education Sciences, 15(4), 405.
Aperstein, Y., Tzahar, A., Gottlib, A., Verber, T., Damti, R. S., & Apartsin, A. (2025). Multi-pathology Chest X-ray Classification with Rejection Mechanisms. arXiv preprint arXiv:2509.10348.
Werthaim, M., Kimhi, M., Apartsin, A., & Aperstein, Y. (2025). Asking the Right Questions: Evaluating Diagnostic Dialogue with Q4Dx
Goren, Y., Cohen, Y., Apartsin, A., & Aperstein, Y. (2025). Beyond Words: Interjection Classification for Improved Human-Computer Interaction. arXiv preprint arXiv:2509.03181
Cohen, D., Efrosman, I., Aperstein, Y., & Apartsin, A. (2025). Stitching the Story: Creating Panoramic Incident Summaries from Body-Worn Footage. arXiv preprint arXiv:2509.04370
Bolshinsky, I., Kupiec, S., Sasson, A., Aperstein, Y., & Apartsin, A. (2025). Do Large Language Models Need Intent? Revisiting Response Generation Strategies for Service Assistant. arXiv preprint arXiv:2509.05006
Cohen, Y., Ohayon, D., Somkin, R., Aperstein, Y., & Apartsin, A. (2025). Code Review Without Borders: Evaluating Synthetic vs. Real Data for Review Recommendation. arXiv preprint arXiv:2509.04810
Dahary, S., Edana, A., Apartsin, A., & Aperstein, Y. (2025). From Joy to Fear: A Benchmark of Emotion Estimation in Pop Song Lyrics. arXiv preprint arXiv:2509.05617
Aperstein, Y., Gottlib, A., Benita, G., & Apartsin, A. (2025). Towards Knowledge-Aware Document Systems: Modeling Semantic Coverage Relations via Answerability Detection. arXiv preprint arXiv:2509.08304
Aperstein, Y., & Apartsin, A. (2025). Boosted Training of Lightweight Early Exits for Optimizing CNN Image Classification Inference. arXiv preprint arXiv:2509.08318
Cohen, M., Shani, S., Menahem, E., Aperstein, Y., & Apartsin, A. (2025). Reading Between the Lines: Classifying Resume Seniority with Large Language Models. arXiv preprint arXiv:2509.09229
Nofar, L., Portal, T., Elbaz, A., Apartsin, A., & Aperstein, Y. (2025). An Interpretable Benchmark for Clickbait Detection and Tactic Attribution. arXiv preprint arXiv:2509.10937
Mama, E., Sheri, L., Aperstein, Y., & Apartsin, A. (2025). From Fuzzy Speech to Medical Insight: Benchmarking LLMs on Noisy Patient Narratives. arXiv preprint arXiv:2509.11803
Goncharok, D., Shifman, A., Apartsin, A., & Aperstein, Y. (2025). When Curiosity Signals Danger: Predicting Health Crises Through Online Medication Inquiries. arXiv preprint arXiv:2509.11802
Apartsin, A., Tchemerisov, V., Cooperman, V. User search interface. US20240338980A1
Basri, R., Brestel, C., Galun, M., Apartsin, A., Method and apparatus for matching portions of input images. US8175412B2
Kahlon, H., Apartsin, A., David, L. & Mordel, T., Methods and systems for responding to an audio query where the response is determined to have a public safety impact. US10825450B2
Apartsin, A., Stein, Y., Vardi, Y. System and Method for Physical Model-Based Machine Learning. US20220382939A1
Henrichs, K., Blanc, S.M., Shalev, Y. & Apartsin, A., System and method for model training for a new signal based on metadata representations of known signals, US20230351160A1
Stein, Y., Vardi, Y., Apartsin, A., A system and method for the unification and optimization of machine learning inference pipelines.US20240013095A1
Kovalets, S., Barabanov, S., Shalev, Y., Apartsin, A. System and method for model configuration selection, US11868899B2
Apartsin. A., Henrichs K., Kossaczky I., Kovalets S., Mavliutov Y., Korchahin I., DTC rulebook generation system and method, US20240338980A1
Bakalo, R, Apartsin. A. A system and method for feature selection recommendation, US20220383141A1
Shalev, Y., Henrich, K., Kossaczky, I., Apartsin, A. A system and method for determining a score for a driver of a vehicle, IL308506AIL308506A
My computing journey(private stuff)